Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 5817, 2024 03 09.
Article in English | MEDLINE | ID: mdl-38461365

ABSTRACT

There is an increasing need to implement neuromorphic systems that are both energetically and computationally efficient. There is also great interest in using electric elements with memory, memelements, that can implement complex neuronal functions intrinsically. A feature not widely incorporated in neuromorphic systems is history-dependent action potential time adaptation which is widely seen in real cells. Previous theoretical work shows that power-law history dependent spike time adaptation, seen in several brain areas and species, can be modeled with fractional order differential equations. Here, we show that fractional order spiking neurons can be implemented using super-capacitors. The super-capacitors have fractional order derivative and memcapacitive properties. We implemented two circuits, a leaky integrate and fire and a Hodgkin-Huxley. Both circuits show power-law spiking time adaptation and optimal coding properties. The spiking dynamics reproduced previously published computer simulations. However, the fractional order Hodgkin-Huxley circuit showed novel dynamics consistent with criticality. We compared the responses of this circuit to recordings from neurons in the weakly-electric fish that have previously been shown to perform fractional order differentiation of their sensory input. The criticality seen in the circuit was confirmed in spontaneous recordings in the live fish. Furthermore, the circuit also predicted long-lasting stimulation that was also corroborated experimentally. Our work shows that fractional order memcapacitors provide intrinsic memory dependence that could allow implementation of computationally efficient neuromorphic devices. Memcapacitors are static elements that consume less energy than the most widely studied memristors, thus allowing the realization of energetically efficient neuromorphic devices.


Subject(s)
Brain , Neurons , Animals , Neurons/physiology , Action Potentials/physiology , Computer Simulation , Brain/physiology
2.
Infect Dis Model ; 7(1): 122-133, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34926874

ABSTRACT

We analyzed the number of cumulative positive cases of COVID-19 as a function of time in countries around the World. We tracked the increase in cases from the onset of the pandemic in each region for up to 150 days. We found that in 81 out of 146 regions the trajectory was described with a power-law function for up to 30 days. We also detected scale-free properties in the majority of sub-regions in Australia, Canada, China, and the United States (US). We developed an allometric model that was capable of fitting the initial phase of the pandemic and was the best predictor for the propagation of the illness for up to 100 days. We then determined that the power-law COVID-19 exponent correlated with measurements of human mobility. The COVID-19 exponent correlated with the magnitude of air passengers per country. This correlation persisted when we analyzed the number of air passengers per US states, and even per US metropolitan areas. Furthermore, the COVID-19 exponent correlated with the number of vehicle miles traveled in the US. Together, air and vehicular travel explained 70% of the variability of the COVID-19 exponent. Taken together, our results suggest that the scale-free propagation of the virus is present at multiple geographical scales and is correlated with human mobility. We conclude that models of disease transmission should integrate scale-free dynamics as part of the modeling strategy and not only as an emergent phenomenological property.

3.
Entropy (Basel) ; 23(5)2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33947077

ABSTRACT

We study the emission of photons from germinating seeds using an experimental technique designed to detect light of extremely small intensity. We analyze the dark count signal without germinating seeds as well as the photon emission during the germination process. The technique of analysis adopted here, called diffusion entropy analysis (DEA) and originally designed to measure the temporal complexity of astrophysical, sociological and physiological processes, rests on Kolmogorov complexity. The updated version of DEA used in this paper is designed to determine if the signal complexity is generated either by non-ergodic crucial events with a non-stationary correlation function or by the infinite memory of a stationary but non-integrable correlation function or by a mixture of both processes. We find that dark count yields the ordinary scaling, thereby showing that no complexity of either kinds may occur without any seeds in the chamber. In the presence of seeds in the chamber anomalous scaling emerges, reminiscent of that found in neuro-physiological processes. However, this is a mixture of both processes and with the progress of germination the non-ergodic component tends to vanish and complexity becomes dominated by the stationary infinite memory. We illustrate some conjectures ranging from stress induced annihilation of crucial events to the emergence of quantum coherence.

4.
medRxiv ; 2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33880487

ABSTRACT

We analyzed the number of cumulative positive cases of COVID-19 as a function of time in countries around the World. We tracked the increase in cases from the onset of the pandemic in each region for up to 150 days. We found that in 81 out of 146 regions the trajectory was described with a power-law function for up to 30 days. We also detected scale-free properties in the majority of sub-regions in Australia, Canada, China, and the United States (US). We developed an allometric model that was capable of fitting the initial phase of the pandemic and was the best predictor for the propagation of the illness for up to 100 days. We then determined that the power-law COVID-19 exponent correlated with measurements of human mobility. The COVID-19 exponent correlated with the magnitude of air passengers per country. This correlation persisted when we analyzed the number of air passengers per US states, and even per US metropolitan areas. Furthermore, the COVID-19 exponent correlated with the number of vehicle miles travelled in the US. Together, air and vehicular travel explained 70 % of the variability of the COVID-19 exponent. Taken together, our results suggest that the scale-free propagation of the virus is present at multiple geographical scales and is correlated with human mobility. We conclude that models of disease transmission should integrate scale-free dynamics as part of the modeling strategy and not only as an emergent phenomenological property.

5.
Entropy (Basel) ; 22(9)2020 Aug 31.
Article in English | MEDLINE | ID: mdl-33286739

ABSTRACT

We present a biological fractional n-species delayed cooperation model of Lotka-Volterra type. The considered fractional derivatives are in the Caputo sense. Impulsive control strategies are applied for several stability properties of the states, namely Mittag-Leffler stability, practical stability and stability with respect to sets. The proposed results extend the existing stability results for integer-order n-species delayed Lotka-Volterra cooperation models to the fractional-order case under impulsive control.

6.
Front Physiol ; 11: 607324, 2020.
Article in English | MEDLINE | ID: mdl-33519512

ABSTRACT

We review the literature to argue the importance of the occurrence of crucial events in the dynamics of physiological processes. Crucial events are interpreted as short time intervals of turbulence, and the time distance between two consecutive crucial events is a waiting time distribution density with an inverse power law (IPL) index µ, with µ < 3 generating non-stationary behavior. The non-stationary condition is characterized by two regimes of the IPL index: (a) perennial non-stationarity, with 1 < µ < 2 and (b) slow evolution toward the stationary regime, with 2 < µ < 3. Human heartbeats and brain dynamics belong to the latter regime, with healthy physiological processes tending to be closer to the border with the perennial non-stationary regime with µ = 2. The complexity of cognitive tasks is associated with the mental effort required to address a difficult task, which leads to an increase of µ with increasing task difficulty. On this basis we explore the conjecture that disease evolution leads the IPL index µ moving from the healthy condition µ = 2 toward the border with Gaussian statistics with µ = 3, as the disease progresses. Examining heart rate time series of patients affected by diabetes-induced autonomic neuropathy of varying severity, we find that the progression of cardiac autonomic neuropathy (CAN) indeed shifts µ from the border with perennial variability, µ = 2, to the border with Gaussian statistics, µ = 3 and provides a novel, sensitive index for assessing disease progression. We find that at the Gaussian border, the dynamical complexity of crucial events is replaced by Gaussian fluctuation with long-time memory.

7.
Front Physiol ; 9: 626, 2018.
Article in English | MEDLINE | ID: mdl-29896114

ABSTRACT

In this paper we emphasize that 1/f noise has two different origins, one compatible with Laplace determinism and one determined by unpredictable crucial events. The dynamics of heartbeats, manifest as heart rate variability (HRV) time series, are determined by the joint action of these different memory sources with meditation turning the Laplace memory into a strongly coherent process while exerting an action on the crucial events favoring the transition from the condition of ideal 1/f noise to the Gaussian basin of attraction. This theoretical development affords a method of statistical analysis that establishes a quantitative approach to the evaluation of the stress reduction realized by the practice of Chi meditation and Kundalini Yoga.

8.
Phys Rev E ; 96(4-1): 042112, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29347624

ABSTRACT

We study two different forms of fluctuation-dissipation processes generating anomalous relaxations to equilibrium of an initial out-of-equilibrium condition, the former being based on a stationary although very slow correlation function and the latter characterized by the occurrence of crucial events, namely, non-Poisson renewal events, incompatible with the stationary condition. Both forms of regression to equilibrium have the same nonexponential Mittag-Leffler structure. We analyze the single trajectories of the two processes by recording the time distances between two consecutive origin recrossings and establishing the corresponding waiting time probability density function (PDF), ψ(t). In the former case, with no crucial events, ψ(t) is an exponential, and in the latter case, with crucial events, ψ(t) is an inverse power law PDF with a diverging first moment. We discuss the consequences that this result is expected to have for the correct interpretation of some anomalous relaxation processes.

9.
Phys Rev E ; 94(1-1): 012136, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27575105

ABSTRACT

We study the joint action of the non-Poisson renewal events (NPR) yielding Continuous-time random walk (CTRW) with index α<1 and two different generators of Hurst coefficient H≠0.5, one generating fractional Brownian motion (FBM) and another scaled Brownian motion (SBM). We discuss the ergodicity breaking emerging from these joint actions and we find that in both cases the adoption of time averages leads to localization. In the case of the joint action of NPR and SBM, localization occurs when SBM would produce subdiffusion. The joint action of NPR and FBM, on the contrary, may lead to localization when FBM is a source of superdiffusion. The joint action of NPR and FBM is equivalent to extending the CTRW to the case where the jumps of the runner are correlated and we argue that the the memory-induced localization requires a refinement of the theoretical perspective about determinism and randomness.

SELECTION OF CITATIONS
SEARCH DETAIL
...